
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 61:683–697
Published online 23 December 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1981

A higher-order accuracy lattice Boltzmann model for the
wave equation

Jianying Zhang, Guangwu Yan∗,† and Yinfeng Dong

Department of Mechanics and Engineering Mathematics, College of Mathematics, Jilin University,
Changchun 130012, People’s Republic of China

SUMMARY

A lattice Boltzmann model with higher-order accuracy for the wave motion is proposed. The new model
is based on the technique of the higher-order moment of equilibrium distribution functions and a series of
lattice Boltzmann equations in different time scales. The forms of moments are derived from the binary
wave equation by designing the higher-order dissipation and dispersion terms. The numerical results agree
well with classical ones. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann method (LBM) originated from a Boolean fluid model known as the lattice
gas automata (LGA) [1] for modeling fluid flows. It has been developed as a new alternative method
for computational fluid dynamics (CFD) [2]. The LBM starts from mesoscopic kinetic equation,
i.e. the lattice Boltzmann equation, to determine macroscopic fluid flows. The kinetic nature
brings certain advantages over conventional numerical methods, such as the algorithmic simplicity,
parallel computation, easy handing of complex boundary conditions and efficient hydrodynamics
simulations. During the past few years much progress has been made that extends the LBM as a
tool for simulating many complex problems, such as multi-phase flow, suspensions flow and flow in
porous media: flows that are quite difficult to simulate by conventional method [2–5]. On the other
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hand, lattice Boltzmann model has undergone a number of further refinements. A new method,
named as higher-order moment method, is proposed to obtain higher-order accuracy of truncation
error. For example, recent studies by using this method show that the lattice Bhatnagar–Gross–
Krook (LBGK) model could be used to simulate wave motion [6–8], the soliton wave [9], Lorenz
attractor [10], and nonlinear Schrödinger equation [11, 12].

Now, we focus on the lattice Boltzmann model for the Wave equation [6–8, 13, 14]. The linear
wave equation (LWE) governs the quantity u(x, t) and

�2u
�t2

=a2
�2u
�x2

where a is the wave speed. This equation can be transformed into the following form:

�u
�t

+a
�w
�x

= 0

�w

�t
+a

�u
�x

= 0

(1)

where u=u(x, t), w=w(x, t) are real variables. We denote u1=u, u2=w, and introduce A�� as

[A]=
(
0 a

a 0

)
≡ A��

Equation (1) can be written as

�u�

�t
+A��

�u�

�x
=0, �=1,2, �=1,2 (2)

where �=1 and 2 refers to u and w parts, �=1 and 2 denotes the dimensions.
We have much interest in its lattice Boltzmann model with higher-order accuracy of truncation

error. The lattice Boltzmann scheme has recently begun to receive considerable attention as an
alternative numerical scheme for simulation of fluid flows and nonlinear systems. The conventional
LBM, however, requires real one-particle distribution function. Because the wave equation (2)
is scripted by two real quantities, the strategy we select to build lattice Boltzmann scheme is
to separate the wave equation into two parts to obtain a two-species reaction–diffusion system
[10]. This paper consists of three parts: (1) a series of lattice Boltzmann equations in different
time scales and higher-order moment method are proposed, (2) a lattice Boltzmann model with
higher-order accuracy for the wave equation is obtained, (3) numerical simulation examples are
given.

In the next section, a series of lattice Boltzmann equations in different time scales and higher-
order moment method are described. In Section 3, we contribute a lattice Boltzmann model with
higher-order accuracy for the wave equation. In Section 4, we give two numerical examples, and
Section 5 gives concluding remarks.
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2. A SERIES OF LATTICE BOLTZMANN EQUATIONS IN DIFFERENT TIME SCALES

2.1. The lattice Boltzmann model

We hold that the particles exist at a point in a probability with its mesoscopic velocity, and the
quantities of particles evolve as the rule of lattice Boltzmann equation. In the process of evolution
we assume that the distribution possesses equilibrium state. The following is the concrete details
of the model in a way we used.

In D-dimensional space, the velocity of particles can be discretized into b directions, the particles
move along the b links connecting each node and its nearest neighbors. In addition, there exist rest
particles at each node, so the directions can be regarded as b+1 actually. Then if the process of
colliding while particles are arriving at each node is considered additionally, the lattice Boltzmann
equation will be obtained as

f �
� (x+e�, t+1)= f �

� (x, t)− 1

�
[ f �

� (x, t)− f �,eq
� (x, t)] (3)

where f �
� (x, t) is the distribution function defined as the one-particle distribution function with

species �, velocity e� at time t , position x. f �,eq
� (x, t) is the local equilibrium distribution, � is the

single-relaxation time factor. f �,eq
� (x, t) satisfies the conservation condition∑

�
f �,eq
� (x, t)=∑

�
f �
� (x, t) (4)

2.2. A series of lattice Boltzmann equations in different time scales

We introduce the Knudsen number � defined as �=�/L as the time step �t [6], where � is the
mean free path and L is the characteristic length. Thus, the lattice Boltzmann equation (3) is
changed into

f �
� (x+�e�, t+�)= f �

� (x, t)− 1

�
[ f �

� (x, t)− f �,eq
� (x, t)] (5)

In Equation (5), Knudsen number � is assumed to be small, therefore, the Chapman–Enskog
expansion [15] can be applied to f�(x, t). If the terms up to O(�7) are retained, then

f �
� = f �,eq

� +
6∑

n=1
�n f �,(n)

� +O(�7) (6)

Introducing different time scales t0, t1, t2, . . . , t6 defined as

ti =�i t, i=0,1, . . . , (7)

thus,

�
�t

=
i=6∑
i=0

�i
�
�ti

+O(�7) (8)

Using Taylor expansion in Equation (5), it is

f �
� (x+�e�, t+�)− f �

� (x, t)=
6∑

n=1

�

n!
n
(

�
�t

+e�
�
�x

)n
f �
� (x, t)+O(�7) (9)
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Combining Equations (5)–(9), the equation to the zero-order in � is

� f �,(0)
� =−1

�
f �,(1)
� (10)

where f �,(0)
� ≡ f �,eq

� , partial differential operator �≡�/�t0+e��/�x.
Equations to other orders in � are as follows:

�
�t1

f �,(0)
� +�2�

2 f �,(0)
� =−1

�
f �,(2)
� (11)

�3�
3 f �,(0)

� +2�2�
�

�t1
f �,(0)
� + �

�t2
f �,(0)
� =−1

�
f �,(3)
� (12)

�4�
4 f �,(0)

� +3�3�
2 �
�t1

f �,(0)
� +2�2�

�
�t2

f �,(0)
� + �

�t3
f �,(0)
� +�2

�2

�t21
f �,(0)
� =−1

�
f �,(4)
� (13)

�5�
5 f �,(0)

� +4�4�
3 �
�t1

f �,(0)
� +3�3�

2 �
�t2

f �,(0)
� +2�2�

�
�t3

f �,(0)
�

+ �
�t4

f �,(0)
� +3�3�

�2

�t21
f �,(0)
� +2�2

�2

�t1�t2
f �,(0)
� =−1

�
f �,(5)
� (14)

�6�
6 f �,(0)

� +5�5�
4 �
�t1

f �,(0)
� +4�4�

3 �
�t2

f �,(0)
� +3�3�

2 �
�t3

f �,(0)
�

+2�2�
�

�t4
f �,(0)
� + �

�t5
f �,(0)
� +6�4�

2 �2

�t21
f �,(0)
� +6�3�

�2

�t1�t2
f �,(0)
�

+2�2
�2

�t1�t3
f �,(0)
� +�3

�3

�t31
f �,(0)
� +�2

�2

�t22
f �,(0)
� =−1

�
f �,(6)
� (15)

In Equations (10)–(15) �1, . . . ,�6 are six polynomials of the relaxation time factor � they are
expressed as follows:

�1=1 (16)

�2= 1
2 −� (17)

�3=�2−�+ 1
6 (18)

�4=−�3+ 3
2�

2− 7
12�+ 1

24 (19)

�5=�4−2�3+ 5
4�

2− 1
4�+ 1

120 (20)

�6=−�5+ 5
2�

4− 13
6 �3+ 3

4�
2− 31

360�+ 1
720 (21)
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Figure 1. The relations between coefficients �i and �. tau1, tau2, . . . , tau6 represent �1, . . . ,�6, respectively.

These polynomials (16)–(21) have the character: when �>1.0,�2, �4 and �6 are negative numbers,
but �3 and �5 are positive numbers. In Figure 1, we plot the relations between �i and the relaxation
time factor �.

Equations (10)–(15) is so-called a series of lattice Boltzmann equations in different time scales.
It is suitable for one-, two- and three-dimensional case. In Reference [6] four lattice Boltzmann
equations (10)–(13) are given. Nevertheless, it is not enough to find equations with higher-order
accuracy. By adding lattice Boltzmann equations (14)–(15), the wave equation with more than
two-order accuracy could be obtained.

2.3. Equilibrium distribution functions and their higher-order moments

The macroscopic quantity u�(x, t) in one-dimensional wave equation (2) is defined by

u�(x, t)=∑
�

f �
� (x, t) (22)

According to the conservation condition (4), we have∑
�

f �,eq
� (x, t)=u�(x, t) (23)

and ∑
�

f �,(n)
� (x, t)=0, n�1 (24)

The moments of equilibrium distribution function are defined as

u�(x, t)=∑
�

f �,(0)
� (x, t) (25)

m0
�(x, t)=

∑
�

f �,(0)
� (x, t)e� (26)
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Figure 2. Diagrammatic sketch of one-dimensional 5-bit lattice.

�0�(x, t)=
∑
�

f �,(0)
� (x, t)e2� (27)

P0
� (x, t)=∑

�
f �,(0)
� (x, t)e3� (28)

Q0
�(x, t)=

∑
�

f �,(0)
� (x, t)e4� (29)

R0
�(x, t)=

∑
�

f �,(0)
� (x, t)e5� (30)

S0�(x, t)=∑
�

f �,(0)
� (x, t)e6� (31)

Let us consider a 5-bit model, the discrete velocities set is e� =(0,c,−c,2c,−2c), where �=
0,1, . . . ,4, c is the magnitude of velocity. The diagrammatic sketch of lattice is shown as Figure 2.

The equilibrium distribution functions of 5-bit model can be solved by Equations (25)–(29),
they are

f �,(0)
1 = 1

6c4
(4m0

�c
3+4�0�c

2−Q0
�−P0

� c) (32)

f �,(0)
2 = 1

6c4
(−4m0

�c
3+4�0�c

2−Q0
�+P0

� c) (33)

f �,(0)
3 = 1

24c4
(2P0

� c−2m0
�c

3+Q0
�−�0�c

2) (34)

f �,(0)
4 = 1

24c4
(−2P0

� c+2m0
�c

3+Q0
�−�0�c

2) (35)

f �,(0)
0 =u�− f �,(0)

1 − f �,(0)
2 − f �,(0)

3 − f �,(0)
4 (36)

When these moments are determined, the equilibrium distribution functions will be found.

3. LATTICE BOLTZMANN MODEL FOR THE BINARY WAVE EQUATIONS

Making (10)+(11)∗�+(12)∗�2+(13)∗�3+(14)∗�4 and summing Equations (10)–(14) over �,
we have

�u�

�t
+A��

�u�

�x
+E1+E2+E3+E4=O(�5) (37)
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In Equation (37),

E1=�
∑
�

�2�
2 f �,(0)

� (38)

E2=�2
∑
�

(
�3�

3 f �,(0)
� +2�2�

�
�t1

f �,(0)
�

)
(39)

E3=�3
∑
�

(
�4�

4 f �,(0)
� +3�3�

2 �
�t1

f �,(0)
� +2�2�

�
�t2

f �,(0)
� +�2

�2

�t21
f �,(0)
�

)
(40)

E4 = �4
∑
�

(
�5�

5 f �,(0)
� +4�4�

3 �
�t1

f �,(0)
� +3�3�

2 �
�t2

f �,(0)
� +2�2�

2 �
�t3

f �,(0)
�

+3�3�
�2

�t21
f �,(0)
� +2�2

�2

�t1�t2
f �,(0)
�

)
(41)

Summing Equation (10) over �, we obtain the conservation law in time scale t0

�u�

�t0
+ �m0

�

�x
=0 (42)

In order to find those E1,E2,E3 and E4, we assume that moments satisfy

m0
�(x, t)=

∑
�

f �,(0)
� (x, t)e� = A��u� (43)

�0�(x, t)=
∑
�

f �,(0)
� (x, t)e2� = A��A��u� (44)

P0
� (x, t)=∑

�
f �,(0)
� (x, t)e3� = A��A��A�	u	−�u� (45)

Q0
�(x, t)=

∑
�

f �,(0)
� (x, t)e4� = A��A��A�	A	
u
−Ku�−�A��u� (46)

where �, K are parameters. According to Equations (32)–(36), these equilibrium distribution
functions f �,(0)

� can be found, and the moment R0
� is determined

R0
� =∑

�
f �,(0)
� e5� =( f �,(0)

1 − f �,(0)
2 )c5+32( f �,(0)

3 − f �,(0)
4 )c5

= 5P0
� c

2−4m0
�c

4 (47)

= 5c2A��A��A�	u	−4c4A��u�
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If we set �=0, therefore

E1=�
∑
�

�2�
2 f �,(0)

� =��2

[
�

�t0

(
�u�

�t0
+ �m0

�

�x

)
+ �

�x

(
�m0

�

�t0
+ ��0�

�x

)]
=0 (48)

E2=�2
∑
�

(
�3�

3 f �,(0)
� +2�2�

�
�t1

f �,(0)
�

)
=�2�3

∑
�

�3 f �,(0)
� =0 (49)

E3 = �3
∑
�

(
�4�

4 f �,(0)
� +3�3�

2 �
�t1

f �,(0)
� +2�2�

�
�t2

f �,(0)
� +�2

�2

�t21
f �,(0)
�

)

= −�3�4K
�4u�

�x4
(50)

E4 = �5�
4∑

�

[
4

�4

�t0�x3

(
�P0

�

�t0
+ �Q0

�

�x

)
+ �4

�x4

(
�Q0

�

�t0
+ �R0

�

�x

)]

= �5�
4[(5K −4c4)A��	��−A��A��A�	A	
A
�+5c2A��A��A�			�]�

5u�

�x5
(51)

Equation (37) is

�u�

�t
+A��

�u�

�x
=�3�4K

�4u�

�x4
−E4+O(�5) (52)

The truncation error is

R=−�3�4K
�4u�

�x4
+E4+O(�5) (53)

Selecting the parameter K =0, Equation (37) becomes

�u�

�t
+A��

�u�

�x
=O(�4) (54)

The stability of the lattice Boltzmann scheme Equation (5) is controlled by the coefficient of the
term �4u�/�x4 whether negative or not [16]. If the lattice Boltzmann scheme is stable, �3�4K has to
be negative, if K>0, �>1 then �4<0, K �3�4<0. In this paper, �=1.2, K =1, �4=−0.22633339.

4. NUMERICAL EXAMPLES

To test the effect of this model, we choose two examples for one-dimensional wave equation.
We select the lattice size M , the mesoscopic speed c, the step of x as �x . The length of the
computing region is l=M�x ; the Knudsen number is �=�x/c. The wave propagation speed is a.
The initial condition of distribution function is given by Equations (32)–(36) from the macroscopic
quantity u� at time t=0. The boundary conditions of f �

� are given by Equations (32)–(36) from
the macroscopic quantity u� on boundaries.
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Example 1
The one-dimensional wave equation is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�2u
�t2

=a2
�2u
�x2

, t>0, −∞<x<∞

u(x,0)= 0.2

1+9x2
,

�u(x,0)

�t
=0

(55)

This problem has exact solution [6]

ue(x, t)= 0.1

1+9(x−at)2
+ 0.1

1−9(x−at)2
(56)

where a is the wave propagation speed.

In this example, the computing region is [−5,5], the wave propagation speed a=0.1, lattice size
M=1000, �x=0.01, c=3.0, thus, �=�t=�x/c= 1

3 ×10−2, �=1.2, K =1.0. In Figure 3, we plot
curves at the time steps N =2000, 6000 and 8000. The boundary conditions are �u(−5, t)/�x=0
and �u(5, t)/�x=0.

In Figure 3(a–d), we plot the wave motion at three moments besides initial condition. We
find that the single wave packet evolves into a right-traveling wave packet and a left-traveling
wave packet and the shapes are preserved at all times. We also give the errors by using function
e(x, t)=|(u(x, t)−ue(x, t))/ue(x, t)|, where ue(x, t) is the exact solution in Equation (56). In
Figure 3(e), we plot the curve of errors versus position x . By comparison, this result has higher
accuracy than the result in Reference [6] since it has the fourth-order accuracy of truncation error.
The relative error is around the scope of (−1.0×10−4,1.0×10−4). This numerical result shows
good agreement with exact solution.

Example 2
Consider wave equations:

�u�

�t
+A��

�u�

�x
=0, �=1,2, �=1,2, A=

(
0 1

1 0

)
(57)

with square wave initial condition

u01(x)=
{
1, −2�x�−1

0 others
(58)

u02(x)=
{
1, 1�x�2

0 others
(59)

It possesses the exact solution [16–18]
u1(x, t)= 1

2 [u01(x− t)+u01(x+ t)]+ 1
2 [u02(x− t)−u02(x+ t)] (60)

u2(x, t)= 1
2 [u02(x− t)+u02(x+ t)]+ 1

2 [u01(x− t)−u01(x+ t)] (61)
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Figure 3. Comparisons between numerical simulation (circle) and theoretical results (line) of Example 1,
where (a) the initial value; (b) t=2000�t ; (c) t=6000�t ; and (d) t=8000�t . Parameters: wave propagation
speed a=0.1, lattice size M=1000, �x=0.01, c=3.0, �=�t= 1

3 ×10−2, �=1.2, K =1.0. (e) The errors
curve versus position x at time t=3000�t .
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Figure 4. Comparisons between numerical simulation (circle) and theoretical results (line) of the macro-
scopic quantity u for Example 2, where (a) the initial value; (b) t=100�t ; (c) t=400�t ; and (d) t=800�t .
Computing region is [−10,10], lattice size M=2000, �x=0.01, c=3, �=�t= 1

3 ×10−2, �=1.2, K =1.0.

In this example, the computing region is [−10,10], lattice size M=2000, �x=0.01, c=3.0,
thus, �=�t=�x/c= 1

3 ×10−2, �=1.2, K =1.0. The boundary conditions are �u�(−10, t)/�x=0
and �u�(10, t)/�x=0, �=1,2.

In Figure 4(a–d), we plot the comparisons between numerical simulation (circle) and theoretical
results (line) of the wave motion of macroscopic quantity u(x, t) at four moments for Example 2,
(a) t=0, (b) t=100�t , (c) t=400�t , (d) t=800�t . At initial time, a square wave u(x, t) was

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:683–697
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Figure 5. Comparisons between numerical simulation (circle) and theoretical results (line) of the macro-
scopic quantity w for Example 2, where (a) the initial value; (b) t=100�t ; (c) t=400�t ; and (d) t=800�t .
Computing region is [−10,10], lattice size M=2000, �x=0.01, c=3, �=�t= 1

3 ×10−2, �=1.2, K =1.0.

placed at plane x–u. We find that another square wave emerges immediately due to quantity w(x, t),
and then per square wave packet evolves into a right-traveling square wave and a left-traveling
square wave packet. The two kinds of square wave packets will meet and collide and then they
will pass through each other. This numerical result shows good agreement with exact solution.
Figure 5(a–d) shows the wave motion of macroscopic quantity w(x, t) at four moments, (a) t=0,
(b) t=100�t , (c) t=400�t , (d) t=800�t .
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Figure 6. Absolute errors of the macroscopic quantity u at t=800�t for Example 2, where (a) the result
of two-order model in Reference [6]; (b) the result of two-order model in this paper. Computing region

is [−10,10], lattice size M=2000, �x=0.01, c=3, �=�t= 1
3 ×10−2, �=1.2, K =1.0.

Figure 7. The curves of the infinite norm of the absolute error Er=u−u∗ versus the Knudsen number � to
Example 2. The parameters are: c=3.0, time t=2.0, �=1.2, K =1.0. The space region is x ∈[−10,10].

In Figure 6, we give the absolute errors of the macroscopic quantity u at t=800�t for Example 2,
where (a) the result of two-order model in Reference [6]; (b) the result of two-order model in this
paper. From the comparison in (a) and (b), the absolute error of the LBM was found to be smaller
than the absolute error of the two-order LBM in Reference [6]. It is in good agreement with exact
solution. From the absolute errors of the two LBM results and exact solution in (b), we could see
the errors of the LBM results within a region of (−0.008,0.008).

We also plot the curves of the infinite norm of the absolute error Er=u−u∗ versus the Knudsen
number � at t=2.0 to Example 2, where u∗ is the exact solution, see Figure 7. This figure shows

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:683–697
DOI: 10.1002/fld



696 J. ZHANG, G. YAN AND Y. DONG

the relations between the absolute error and the Knudsen number �. It provides a qualitative trend
of the numerical order of convergence. We also find the absolute error of the LBM is smaller than
the absolute error of the two-order LBM in Reference [6].

5. CONCLUDING REMARKS

In this paper, a lattice Boltzmann model for wave equation with higher-order accuracy is proposed.
A key step is that a series of lattice Boltzmann equations in different time scales is given; therefore,
the equilibrium distribution functions of one-dimensional case are expressed by moments of them.

In order to improve the order of truncation errors, we add more terms of higher power of u.
When the higher-order moments are determined, the equilibrium distribution functions are known.
In this paper a 5-bit model is used; thus, five moments are proposed.

Finally we point out that this method and the main idea in the paper, including a series of
partial differential equations in different time scales and its equilibrium distribution, can be spread
into two- and three-dimensional linear and nonlinear wave equation. Nevertheless, there are many
problems to be solved to develop this model as a tool of simulating linear and nonlinear wave
equation. We would discuss these problems in further papers.
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